Serveur d'exploration sur Caltech

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The relationship between plate velocity and trench viscosity in Newtonian and power‐law subduction calculations

Identifieur interne : 000869 ( Main/Exploration ); précédent : 000868; suivant : 000870

The relationship between plate velocity and trench viscosity in Newtonian and power‐law subduction calculations

Auteurs : Scott D. King ; Bradford H. Hager [États-Unis]

Source :

RBID : ISTEX:595B9631E27BBBD5065D734EDD01BBEFBF43C213

Abstract

Convection with a Newtonian temperature‐dependent rheology leads to little or no surface velocity unless zones of weakness are introduced. “Plate‐like” features are observed in calculations both with Newtonian rheology, employing imposed weak zones, and with power‐law (non‐Newtonian) rheology, where high stresses at the trench reduce the effective viscosity. Since deformation at subduction zones involves faulting, both of these parameterizations should be treated with some skepticism. It is important to understand how the parameterizations affect the model results. We study the relationship between trench viscosity and plate velocity using a Newtonian rheology by varying the viscosity at the trench. The plate velocity is a function of the trench viscosity for fixed Rayleigh number and plate/slab viscosity. Slab velocities for non‐Newtonian rheology calculations are significantly different from slab velocities from Newtonian rheology calculations at the same effective Rayleigh number. Both models give reasonable strain‐rates for the slab when compared with estimates of seismic strain‐rate. Non‐Newtonian rheology eliminates the need for imposed weak zones and provides a self‐consistent fluid dynamical mechanism for subduction in numerical convection models.

Url:
DOI: 10.1029/GL017i013p02409


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The relationship between plate velocity and trench viscosity in Newtonian and power‐law subduction calculations</title>
<author>
<name sortKey="King, Scott D" sort="King, Scott D" uniqKey="King S" first="Scott D." last="King">Scott D. King</name>
</author>
<author>
<name sortKey="Hager, Bradford H" sort="Hager, Bradford H" uniqKey="Hager B" first="Bradford H." last="Hager">Bradford H. Hager</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:595B9631E27BBBD5065D734EDD01BBEFBF43C213</idno>
<date when="1990" year="1990">1990</date>
<idno type="doi">10.1029/GL017i013p02409</idno>
<idno type="url">https://api.istex.fr/document/595B9631E27BBBD5065D734EDD01BBEFBF43C213/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">000249</idno>
<idno type="wicri:Area/Main/Curation">000249</idno>
<idno type="wicri:Area/Main/Exploration">000869</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Exploration">000869</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">The relationship between plate velocity and trench viscosity in Newtonian and power‐law subduction calculations</title>
<author>
<name sortKey="King, Scott D" sort="King, Scott D" uniqKey="King S" first="Scott D." last="King">Scott D. King</name>
<affiliation>
<wicri:noCountry code="subField">Caltech</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Hager, Bradford H" sort="Hager, Bradford H" uniqKey="Hager B" first="Bradford H." last="Hager">Bradford H. Hager</name>
<affiliation wicri:level="4">
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Geophysical Research Letters</title>
<title level="j" type="abbrev">Geophys. Res. Lett.</title>
<idno type="ISSN">0094-8276</idno>
<idno type="eISSN">1944-8007</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="1990-12">1990-12</date>
<biblScope unit="volume">17</biblScope>
<biblScope unit="issue">13</biblScope>
<biblScope unit="page" from="2409">2409</biblScope>
<biblScope unit="page" to="2412">2412</biblScope>
</imprint>
<idno type="ISSN">0094-8276</idno>
</series>
<idno type="istex">595B9631E27BBBD5065D734EDD01BBEFBF43C213</idno>
<idno type="DOI">10.1029/GL017i013p02409</idno>
<idno type="ArticleID">90GL01713</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0094-8276</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Convection with a Newtonian temperature‐dependent rheology leads to little or no surface velocity unless zones of weakness are introduced. “Plate‐like” features are observed in calculations both with Newtonian rheology, employing imposed weak zones, and with power‐law (non‐Newtonian) rheology, where high stresses at the trench reduce the effective viscosity. Since deformation at subduction zones involves faulting, both of these parameterizations should be treated with some skepticism. It is important to understand how the parameterizations affect the model results. We study the relationship between trench viscosity and plate velocity using a Newtonian rheology by varying the viscosity at the trench. The plate velocity is a function of the trench viscosity for fixed Rayleigh number and plate/slab viscosity. Slab velocities for non‐Newtonian rheology calculations are significantly different from slab velocities from Newtonian rheology calculations at the same effective Rayleigh number. Both models give reasonable strain‐rates for the slab when compared with estimates of seismic strain‐rate. Non‐Newtonian rheology eliminates the need for imposed weak zones and provides a self‐consistent fluid dynamical mechanism for subduction in numerical convection models.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
<settlement>
<li>Cambridge (Massachusetts)</li>
</settlement>
<orgName>
<li>Massachusetts Institute of Technology</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="King, Scott D" sort="King, Scott D" uniqKey="King S" first="Scott D." last="King">Scott D. King</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Hager, Bradford H" sort="Hager, Bradford H" uniqKey="Hager B" first="Bradford H." last="Hager">Bradford H. Hager</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amerique/explor/CaltechV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000869 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000869 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amerique
   |area=    CaltechV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:595B9631E27BBBD5065D734EDD01BBEFBF43C213
   |texte=   The relationship between plate velocity and trench viscosity in Newtonian and power‐law subduction calculations
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 11:37:59 2017. Site generation: Mon Feb 12 16:27:53 2024